SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

- 1. In the complex ion [Fe(EDTA)]- the co-ordination number and oxidation state of central metal ion is -
 - (A) C. N. = 6, O. N. = +3

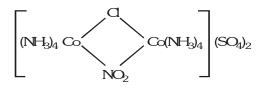
(B) C. N. = 1, O. N. = -1

(C) C. N. = 4, O. N. = +2

- (D) C. N. = 3, O. N. = +3
- 2. The IUPAC name of the complex [CrCl₂(H₂O)₄]NO₃ is -
 - (A) Dichlorotetraaquachromium(III) nitrate
- (B) Tetraaquadichlorochromium(III) nitrate
- (C) Chromiumtetraaquadichloro nitrate
- (D) Dichlorotetraaquachromium nitrate
- Amongst TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$ (At. No. of Ti = 22, Co = 27, Cu = 29, Ni = 28) 3. The colourless species are -
- (A) $\operatorname{CoF_6^{3-}}$ and $\operatorname{NiCl_4^{2-}}$ (B) $\operatorname{TiF_6^{2-}}$ and $\operatorname{CoF_6^{3-}}$ (C) $\operatorname{Cu_2Cl_2}$ and $\operatorname{NiCl_4^{2-}}$ (D) $\operatorname{TiF_6^{2-}}$ and $\operatorname{Cu_2Cl_2}$
- 4. Which of the following complex can not exhibit geometrical isomerism -
 - (A) $[Pt(NH_3)_2Cl\ NO_2]$
- (B) $[Pt(gly)_{o}]$
- (C) $[Cu(en)_{o}]^{+}$
- (D) $[Pt(H_2O)(NH_3)BrCl]$
- $[Cu(H_2O)_4]^{2+}$ absorbs orange light and the transmitted complementary colour will be -5.
 - (A) Green
- (B) Yellow
- (C) Blue
- (D) Violet

- 6. AgCl precipitate dissolves in NH3 due to the formation of -
 - (A) $[Ag(NH_3)_3]OH$

(B) $[Ag(NH_2)_2]Cl$


(C) [Ag(NH₃)₂]Cl

- (D) $[Ag(NH_3)_3]OH$
- 7. Which one of the following compounds will exhibit linkage isomerism -
 - (A) [Pt (NH₂)₂ Cl₂]
- (B) $[Co (NH_3)_2 NO_2]Cl_2$
- (C) [Co (NH₃)₄ Cl₂]Cl
- (D) [Co (en)₂Cl₂]Cl
- 8. A magnetic moment of 1.73 BM will be shown by one among of the following compounds -
 - (A) $[Cu(NH_3)_4]^{2+}$
- (B) [Ni(CN)₄]²⁻
- (C) TiCl₄
- (D) $[CoCl_c]^{-3}$
- Give the name of the complex compound $K_3[Fe(C_2O_4)_3]$ according to IUPAC system -9.
 - (A) Potassium Ferric oxalate

(B) Potassium trioxalatoiron(III)

(C) Potassium trioxalatoferrate(III)

- (D) Tripotassium trioxalatoferrate(III)
- 10. Give the IUPAC name of the complex compound [Co(NH3)4(H2O)Br](NO3)2:-
 - (A) Bromoaquotetraaminecobalt(III) nitrate
- (B) Bromoaquotetraaminocobalt(III) nitrate
- (C) Bromoaquatetraamminecobalt(III) nitrate
- (D) Tetraammineaquabromocobalt(III) nitrate
- 11. Name the following compound according to IUPAC system

- (A) Octamine- μ -chloro- μ -nitrodicobalt(III) sulphate
- (B) Octaammine- μ -chloro- μ -nitrodicobalt(III) sulphate
- (C) Octaammine- μ -nitro- μ -chlorodicobalt(III) sulphate
- (D) None of the above

	(A) Ferrous ferricyanid	e (B) Ferri ferrocyanide ((C) Potassium cyanide (D)) Potassium ferricyanide
13.	Hexafluorocobaltate(III)	ion is found to be high	spin complex, the probab	ole hybrid state of cobalt in it
	(A) dsp^2	(B) d^2sp^3	(C) sp^3d^2	(D) sp ³ d
14.	In the complex [Ni(H ₂	$O)_2(NH_3)_4]^{+2}$ the magnetic	moment (μ) of Ni is -	
	(A) Zero	(B) 2.83 BM	(C) 1.73 BM	(D) 3.87 BM
15.	Which of the following	g system has maximum n	umber of unpaired electro	ones -
	(A) d ⁵ (Octahedral, lov	v spin)	(B) d ⁸ (Tetrahedral)	
	(C) d ⁶ (Octahedral, lov	v spin)	(D) d ³ (Octahedral)	
16.	Nessler's reagent is –			
	(A) K ₂ HgI ₄	(B) K ₂ HgI ₄ + KOH	(C) K ₂ HgI ₂ + KOH	(D) $K_2HgI_4 + Hg$
17.	A blue colouration is	not obtained when –		
	(A) NH ₄ OH is added t	o CuSO ₄	(B) CuSO ₄ solution re	eacts with $K_4[Fe(CN)_6]$
	(C) FeCl_3 reacts with I	$K_4[Fe(CN)_6]$	(D) Anhydrous white	CuSO ₄ is dissolved in water
18.	One among the follow	ing complex ions will not	show optical activity -	
	(A) [Pt (Br)(Cl)(I)(NO ₂)(C	$C_2H_5N)(NH_3)$	(B) $Cis-[Co(en)_2Cl_2]^+$	
	(C) $[Co(en)(NH_3)_2Cl_2]^+$		(D) $[Cr(NH_3)_4Cl_2]$	
19.	A Planar Complex (M	abcd) gives –		
	(A) Two Optical isome	er	(B) Two geometrical	isomer
	(C) Three optical isom	ner	(D) Three geometrica	l isomers
20.	A complex shown belo	ow can exhibit –	A F I	5
	(A) Geometrical isome	rism only		\nearrow B
	(B) Optical isomerism	only	/ M	
	(C) Both Optical and	geometrical isomerism	E	C C
	(D) None		D	
21.	$[Co(NH_3)_4Cl_2]NO_2$ and	[Co(NH ₃) ₄ Cl NO ₂]Cl are -	-	
	(A) Geometrical isome	rs	(B) Optical isomers	
	(C) Linkage isomers		(D) Ionisation isomers	
22.	Theoritically the No. (of geometrical isomers ex	pected for octahedral co	mplex [Mabcdef] is –
	(A) Zero	(B) 30	(C) 15	(D) 9
23.	Which of the following	g has two geometrical ison	mers, and is also a non i	onisable complex –
	(A) $PtCl_4$ $2NH_3$	(B) $PtCl_4$ $3NH_3$	(C) $PtCl_4$ $4NH_3$	(D) $PtCl_4$ $6NH_3$
24.	$Na_2S_2O_3.5H_2O$ is used	l in photography to –		
	(A) Reduce AgBr to n	netallic Ag		
	(B) Remove reduced A	Ag		
	(C) Remove undecomp	posed AgBr as a soluble	complex	
	(D) Converts metallic	Ag to silver salt		

12.

Chemical Name of "Turn bull's blue" is -

25.	Oxidation state of Ag in	Oxidation state of Ag in $Na_3[Ag(S_2O_3)_2]$ is -											
	(A) + 2	(B) – 2	(C) 0	(D) +1									
26.	Out of $[Fe(CN)_6]^{4-}$, $[Ni(CN)_6]^{4-}$	$(N)_4]^{-2}$ and $(Ni(CO)_4]$											
	(A) All have identical ge	eometry.											
	(B) All are paramagneti	c.											
	(C) All are dimagnetic.												
	(D) $[Fe(CN)_6]^{-4}$ is dimagn	etic but $[Ni(CN)_4]^{-2}$ and $[(Ni(CN)_4]^{-2}]$	(CO) ₄] are paramagnetic										
27.	Which gives only 25% r	nole of cloride as AgCl, wh	en reacts with excess AgN	NO ₃ -									
	(A) $PtCl_2$. $4NH_3$	(B) $PtCl_4$. $5NH_3$	(C) $PtCl_4$. $4NH_3$	(D) $PtCl_4$. $3NH_3$									
28.	Which of the following	compound is paramagnetic	-										
	(A) Tetracyanonickelate(II) ion	(B) Tetraamminezinc(II)	ion									
	(C) Hexaamine chromiu	m(III) ion	(D) Diammine silver(I) i	on									
29.	The complexes [Co(NO	$(NH_3)_5$ Cl_2 and $[Co(ONO)]$	NO) $(NH_3)_5$] Cl_2 are the examples of										
	(A) Co-ordination isome	rism	(B) Ionisation isomerism	ı									
	(C) Geometrical isomer	sm	(D) Linkage isomerism										
30.	The complex $[Mn(CN)_6]^{4-}$ is -												
	(A) High spin complex		(B) Diamagnetic ion										
	(C) Having magnetic me	oment 1.73 BM	(D) Outer orbital comp	lex									
31.	Amongst the following, identify the species with an atom in +6 oxidation state -												
	(A) MnO ₄ ⁻	(B) Cr(CN) ₆ ³⁻	(C) NiF ₆ ²⁻	(D) CrO_2Cl_2									
32.	Which of the following	statement is incorrect about	t [Fe(H ₂ O) ₅ NO]SO ₄ -										
	(A) It produce in brown	ring test for nitrates	(B) Oxidation state of Fe is $+1$										
	(C) It exhibits geometric	al isomerism	(D) Charge on NO is +1										
33.	Which is/are organome	etallic compound –											
	(I) Grignard reagent	(II) Sodium methoxide	(III) Sodium acetylide										
	(A) II	(B) I, III	(C) I, II	(D) I									
34.		is most likely formula of play $AgNO_3$ to its aqueous solution		total chlorine of the compound									
	(A) PtCl ₄ .6H ₂ O	(B) PtCl ₄ . 5H ₂ O	(C) PtCl ₂ .2H ₂ O	(D) PtCl ₄ .3H ₂ O									
35.	two chlorine atom for o	A complex compound of cobalt has molecular formula containing five NH_3 molecules, one nitro group and two chlorine atom for one cobalt atom. One mole of this compound produces three moles of ion in aqueous solution. On reaction with excess of $AgNO_3$ solution two moles of $AgCl$ get precipitated. The Ionic formula of the compound.											
	(A) [Co(NH ₃) ₄ NO ₂ Cl] N	NH ₃ Cl	(B) [Co(NH ₃) ₅ Cl] ClNO ₂										
	(C) [Co(NH ₃) ₅ NO ₂]Cl ₂		(D) None of these										

36. Which of the following will give maximum number of isomers -(A) $[Co(NH_3)_4Cl_3]^+$ (B) $[Ni(en)(NH_2)_4]^{+2}$ (C) $[Ni(C_2O_4)(en)_2]^0$ (D) $[Cr(SCN)_2(NH_3)_4]^+$ In the complexes $[Fe(H_2O)_c]^{3+}$, $[Fe(en)_3]^{3+}$, $[Fe(C_2O_d)_3]^{3-}$ and $[FeCl_6]^{3-}$, more stability is shown by 37. (C) $[Fe(C_2O_4)_3]^{3-}$ (D) [FeCl₆]³⁻ (A) [Fe(H₂O)₆]³⁺ (B) [Fe(en)₃]³⁺ 38. Both geometrical and optical isomerism are shown by -(B) $[Co(NH_3)_5Cl]^{2+}$ (C) $[Co(C_2O_4)_3]^{-3}$ (D) $[Cr(ox)_3]^{3-}$ (A) $[Co(en)_2Cl_2]^+$ 39. An example for a double salt is (A) Cuprammonium sulphate (B) Mohr's salt (C) Potassium ferricyanide (D) Cobalthexammine chloride One mole of the complex compound Co(NH3)5Cl3, gives 3 moles of ions on dissolution in water. One mole of 40. the same complex reacts with two moles of AgNO3 solution to yield two moles of AgCl (s). The structure of the complex is -(B) $[Co(NH_3)_4Cl_3]$ Cl.NH₃ (A) $[Co(NH_3)_3Cl_3]$. $2NH_3$ (C) $[Co(NH_3)_4Cl]$ $Cl_2.NH_3$ (D) $[Co(NH_3)_5Cl]Cl_3$ 41. What are the geometric shape and the oxidation number of the copper atom, respectively, for the complex ion, $[Cu(NH_3)_4(OH_2)_2]^{2+}$ (A) Tetrahedral; + 2 (B) Square planar; - 2 (C) Linear; + 3 (D) Octahedral; + 2 42. What is the relationship between the following two linear complex ions? [Cl - Ag - SCN]1-[SCN - Ag - Cl]1-The complex ions are -(A) Linkage isomers (B) Coordination isomers (C) Geometric isomers (D) Optical isomers 43. Which of the following common shapes (I-IV) can never exist as geometric isomers, regardless of the identity of the ligands -(II) Square planar (I) Linear (III) Tetrahedral (IV) Octahedral (A) I only (B) I and II (C) I and III (D) II and IV 44. Synergic bonding involves -(A) The transference of electrons from ligands to metal (B) The transference of electrons from filled metal orbitals to anti-bonding orbitals of ligands (C) Both (A) and (B) (D) None of these

								AN	ISW	ER	KE'	Y								
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	Α	В	D	С	С	С	В	Α	С	D	D	Α	С	В	D	В	В	D	D	С
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	D	С	Α	С	D	С	D	С	D	С	D	С	D	D	С	D	В	Α	В	D
Que.	41	42	43	44																
Ans.	D	Α	С	С																

EXERCISE-02 BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

A complex cation is formed by Pt(in some oxidation state) with ligands (in proper number so that coordination										
			AC fiame -							
			0 04 DM for out to don't consulted							
	= '									
		y (b) a (in onong notality	garray							
		(a)1 ⁴⁻ , the electronic configura	ation of metal is found to be							
(B) O – O bond leng	gth will be more than foun	d in O ₂ molecule								
(C) Its IUPAC name	will be chlorotetracyanosup	peroxidoferrate(II) ion.								
(D) It will show geon	netrical as well as optical is	somerism								
The solubility of AgE	Br in hypo solution is due t	to the formation of -								
(A) Ag ₂ SO ₃	(B) $Ag_2S_2O_3$	(C) $[Ag(S_2O_3)]^-$	(D) $[Ag(S_2O_3)_2]^{3-}$							
Photo graphic films	or plates haveas	an essential ingredient –								
(A) Silver oxide	(B) Silver bromide	(C) Silver thio sulphate	(D) Silver nitrate							
Silver halides are us	ed in photography because	e they are -								
(A) Photosensetive		(B) Soluble in hypo solu	ution							
(C) Soluble in NH₄O	Н	(D) Insoluble in acids								
-										
(A) $[Cu(NH_3)_4]Cl_2$	(B) Fe(CO) ₅	(C) NO	(D) NO ₂							
Magnetic moment of x	x^{n+} is $\sqrt{24}$ B.M. Hence No	o. of unpaired electron and val	lue of 'n' respectively. (Atomic							
number = 26)										
	(B) 3, 5	(C) 4, 2	(D) 4 , 1							
			• •							
(A) $K_2Cr_2O_7$	(B) (NH ₄) ₂ [TiCl ₆]	(C) VOSO ₄	(D) K ₃ [Cu(CN) ₄]							
The total number of p	possible isomer for the comp	plex compound : [Cu(NH ₃) ₄]	[PtCl ₄]							
(A) 3	(B) 6	(C) 5	(D) 4							
The image on an exp	osed and developed photog	raphy film is due to –								
(A) AgBr	(B) $[Ag(S_2O_3)_2]^{3+}$	(C) Ag	(D) Ag ₂ O							
The chloro-bis (ethyle		ı is -								
(A) $[Co(NO_2)_2 (en)_2]$	$[0,1]^+$	(B) [CoCl (NO $_2$) $_2$ (en) $_2$] $^+$								
(C) [Co (NO ₂) Cl (en) ₂]+	(D) [Co (en) Cl ₂ (NO ₂) ₂] ⁻								
	number of Pt becom (A) Diammineethylend (B) Diammineethylend (C) Diammineethylend (D) Diamminebis (eth In which of the following (A) d ⁴ (in strong field (C) d ³ (in weak as w (E) d ⁸ (in weak field In the crystal field of t _{2g} ⁶ , e _g ⁰ then which (A) It is a paramagn (B) O - O bond leng (C) Its IUPAC name (D) It will show geon The solubility of AgE (A) Ag ₂ SO ₃ Photo graphic films (A) Silver oxide Silver halides are use (A) Photosensetive (C) Soluble in NH ₄ O The compound which (A) [Cu(NH ₃) ₄]Cl ₂ Magnetic moment of x number = 26) (A) 4, 3 Among the following (A) K ₂ Cr ₂ O ₇ The total number of p (A) 3 The image on an exp (A) AgBr The chloro-bis (ethyletely) (A) [Co (NO ₂) ₂ (en) ₂ Co	number of Pt becomes six). Which of the follow (A) Diammineethylenediaminedithiocyanato-S-pla (B) Diammineethylenediaminedithiocyanato-S-pla (C) Diammineethylenediaminedithiocyanato-S-pla (D) Diamminebis (ethylenediamine) dithiocyanato In which of the following configuration (s) the value of (A) d^4 (in strong field ligand) (C) d^3 (in weak as well as in strong field ligand) In the crystal field of the complex $[Fe(C])(CN)_4(OC)_{29}^6$, e_g^0 then which of the following is/are tru (A) It is a paramagnetic complex (B) O – O bond length will be more than foun (C) Its IUPAC name will be chlorotetracyanosus (D) It will show geometrical as well as optical in the solubility of AgBr in hypo solution is due to (A) Ag_2SO_3 (B) $Ag_2S_2O_3$ Photo graphic films or plates have	number of Pt becomes six). Which of the following can be its correct IUP (A) Diammineethylenediaminedithiocyanato-S-platinum(II) (B) Diammineethylenediaminedithiocyanato-S-platinum(IV) ion (C) Diammineethylenediaminedithiocyanato-S-platinum(IV) ion (D) Diamminebis (ethylenediamine) dithiocyanato-S-platinum(IV) ion In which of the following configuration (s) the value of 'spin only' magnetic moment is : (A) d^4 (in strong field ligand) (B) d^2 (in weak field lig (C) d^3 (in weak field ligand) (D) d^5 (in strong field ligand) In the crystal field of the complex $[Fe(Cl)(CN)_4(O_2)]^{4^-}$, the electronic configurating t_{28}^6 , e_8^0 then which of the following is/are true about this complex ion – (A) It is a paramagnetic complex (B) O – O bond length will be more than found in O_2 molecule (C) Its IUPAC name will be chlorotetracyanosuperoxidoferrate(II) ion. (D) It will show geometrical as well as optical isomerism The solubility of AgBr in hypo solution is due to the formation of – (A) Ag_2SO_3 (B) $Ag_2S_2O_3$ (C) $Ag(S_2O_3)I^-$ Photo graphic films or plates haveas an essential ingredient – (A) Silver oxide (B) Silver bromide (C) Silver thio sulphate Silver halides are used in photography because they are – (A) Photosensetive (B) Soluble in hypo solution in the compound which shows paramagnetism is – (A) $Ag_3(I) = \frac{1}{2} I $							

13.	Zeigler natta catalyst is	_								
	(A) Pt/PtO		(B) $Al(C_2H_5)_3 + TiCl_4$							
	(C) K[PtCl ₃ ($\eta^2 - C_2H_4$)]		(D) Pt/Rh							
14.	Which of the following s	set of isomer isomerism is/a	are correct -							
	(A) $Cis-[Co(gly)_2Cl_2]^-$	optical isomerism	(B) $[Zn(NH_3)_3Cl]^+ - Geo$	ometrical isomerism						
	(C) $[Fe(H_2O)_6]Cl_3 - Hyd$	rate isomerism	(D) $[Co(en)_2(NCS)_2]Cl$ -	Linkage isomerism						
15.	In Na ₂ [Fe(CN) ₅ NO] sodi	ium nitroprusside –								
	(A) Oxidation state of Fe	e is +2	(B) This has NO ⁺ as ligand							
	(C) It is paramagnetic		(D) None is correct							
16.	Which of the following s	statement is correct -								
	(A) $[Cu (NH_3)_6]^{2+}$ is a co	lourless ion	(B) [Ni $(CN)_4$] ²⁻ ion has	tetrahedral shape						
	(C) $[Zn(H_2O)_6]^{2+}$ ion is	blue coloured	(D) Nickel dimethylglyox	kime is red in colour						
17.	Which of the following	have square planar geometr	ry –							
	(a) $[NiCl_4]^{-2}$	(b) $[Cu(NH_3)_4]^{+2}$	(c) [Ni(CO) ₄]	(d) ClF_4^-						
	(A) b, c and d	(B) a, b and c	(C) b and d	(D) All						
18.	Pick up the incorrect sta	atement –								
	(A) Cisplatin is a comple	ex of platinum	(B) Vitamin B_{12} is a con	mplex of cobalt						
	(C) Chlorophyll is a com	nplex of Mangenese	(D) Haemoglobin is a co	omplex of iron						
19.	Which of the following p	pair of molecule have identi	ical shape -							
	(A) $[NiCl_4]^{-2}$ and XeF_4		(B) $[Zn(H_2O)_4]^{+2}$ and Si	Cl_4						
	(C) $[Fe(CO)_5]$ and $XeOF_2$	1	(D) $[Ag(NH_3)_2]^+$ and SF	2						
20.	Hypo is used in photography because it is –									
	(A) A strong reducing a	agent	(B) A strong oxidising agent							
	(C) A strong Complexis	ng agent	(D) Photo sensitive Co	mpound						
21.	The kind of isomerism e	exhibited by [Rh(en) ₂ Cl ₂][Ir(e	en) Cl_4] and $[Rh(en)_3][IrCl_6]$	is -						
	(A) Linkage	(B) Co-ordination	(C) Ligand	(D) Ionisation						
22.	Identify the complex wh	ich are expected to be colo	ourless –							
	(A) [Ti(NO ₃) ₄] ⁰	(B) [Cu(NCCH ₃) ₄] ⁺	(C) $[Cr(NH_3)_6]Cl_3$	(D) K_3VF_6						
23.	Which of following organ	nometallic compound is σ a	and π bonded –							
	(A) $[Fe(\eta^5 - C_5H_5)_2]$	(B) $K[PtCl_3(\eta^2 - C_2H_4)]$	(C) $[Co(CO)_5NH_3]^{+2}$	(D) Fe(CH ₃) ₃						
24.	Which statement is inco	rrect –								
	(A) [Ni(CO) ₄] - Tetrahed	ral, paramagnetic	(B) $[Ni(CN)_4]^{-2}$ - Square	e planar, diamagnetic						
	(C) [Ni(CO) ₄] - Tetrahed	ral, diamagnetic	(D) $[NiCl_4]^{-2}$ - Tetrahed	dral, paramagnetic						
25.	A complex K_n [MnF ₆] value of n?	has magnetic moment 4.9	BM what will be the o	xidation state of Mn and the						
	(A) $Mn(II)$, $n = 4$	(B) $Mn(III)$; $n = 3$	(C) $Mn(IV)$; $n = 2$	(D) $Mn(V)$; $n = 1$						
26.	In [Co(NH ₃) ₆]Cl ₃ , the nu	mber of covalent bonds &	coordinate bonds respective	vely -						
	(A) 3, 6	(B) 6, 6	(C) 8, 9	(D) 18, 6						

27.	CuSO ₄ when reacts with	KCN forms x, which is in	nsoluble in water. x is solul	ble in excess of KCN, due to						
	formation of -									
	(A) $K_2[Cu(CN)_4]$	(B) $K_3[Cu(CN)_4]$	(C) CuCN ₂	(D) $Cu[KCu(CN)_4]$						
28.	A square planar complex	is formed by hybridization	of which atomic orbitals -	-						
	(A) s, p_x , p_y , d_{yz}	(B) s, p_x , p_y , $d_{x^2 - y^2}$	(C) s, p_x , p_y , d_{z^2}	(D) s, p_x , p_y , d_{xy}						
29.	When ${\rm AgNO_3}$ is added to This means –	a solution of $Co(NH_3)_5$ Cl_3	, the precipitate of AgCl sh	nows two ionized chloride ions.						
	(A) Only two chlorine ato	oms satisfy primary valency	and one secondary valenc	у						
	(B) One chlorine atom sa	atisfies primary as well as s	secondary valency							
	(C) Three chlorine atoms	satisfy primary valency								
	(D) Three chlorine atoms	satisfy secondary valency.								
30.	Which of the following co	ompound is not coloured ?								
	(A) Na ₂ [CuCl ₄]	(B) Na ₂ [CdCl ₄]	(C) $Fe_4[Fe(CN)_6]_3$	(D) $K_3[Fe(CN)_6]$						
31.	Colourless species is :									
	(A) VCl ₃	(B) VOSO ₄	(C) Na ₃ VO ₄	(D) $[Ni(H_2O)_6] SO_4.H_2O$						
32.	The coordination number	of a central metal atom i	n a complex is determined	by -						
	(A) The number of ligand	ls around a metal ion bond	led by sigma and pi-bonds	both						
	(B) The number of ligand	ls around a metal ion bond	led by pi-bonds							
	(C) The number of ligand	ls around a metal ion bond	led by sigma bonds							
	(D) The number of only a	anionic ligands bonded to t	he metal ion							
33.	The correct order of magnetic moments (spin only values in B.M.) among is -									
	(A) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$ (B) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$									
	(C) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$ (D) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$									
34.	Among the following serie ration is -	es of transition metal ions,	the one where all metal ior	ns have 3d ² electronic configu-						
	(A) Ti^{2+} , V^{3+} , Cr^{4+} , Mn^5	5+	(B) Ti^{2+} , V^{2+} , Cr^{3+} , Mn^{4+}							
	(C) Ti^+ , V^{4+} , Cr^{6+} , Mn^{7+}		(D) Ti^{4+} , V^{3+} , Cr^{2+} , Mn^{3+}							
35.	CN- is a strong field ligar	nd. This is due to the fact	that:							
	(A) It forms high spin com	nplexes with metal species	(B) It gives nagative char	rge						
	(C) It is a pseudohalide		(D) It can accept electron	ns from metal species						
36.	Which of the following co	oordination compounds wo	uld not exhibit optical isom	nerism ?						
	(A) tris-(ethylenediamine)	cobalt(III) bromide								
	(B) pentaamminenitrocob	alt(III) iodide								
	(C) diamminedichloroplat	inum(II)								
	(D) trans-dicyanobis (ethy	vlenediamine) chromium(III)	chloride							
37.	Among [Ni(CO) ₄], [Ni(respectively (Atomic N		ies, the hybridization s	tates at the Ni atom are,						
	(A) dsp^2 , sp^3 , sp^3		(B) sp^3 , dsp^2 , dsp^2							
	(C) sp^3 , dsp^2 , sp^3		(D) sp^3 , sp^3 , dsp^2							

38.	Which one of the following	ng is expected to not exhib	oit optical isomerism ?	
	(en = ethylenediamine)			
	(A) \underline{cis} - [Pt(NH ₃) ₂ Cl ₂]	(B) <u>cis</u> - [Co(en) ₂ Cl ₂]	(C) <u>trans</u> - [Co(en) ₂ Cl ₂]	(D) \underline{trans} - [Pt(NH ₃) ₂ Cl ₂]
39.	An aqueous solution of C	CoCl ₂ on addition of excess	of concentrated HCl turns	blue due to formations of :
	(A) $[Co(H_2 O)_4Cl_2]$	(B) $[Co(H_2 O)_2Cl_4]^{2-}$	(C) $[CoCl_4]^{2-}$	(D) $[Co(H_2 O)_2Cl_2]$
40.	In which of the following	pairs both the complexes	show optical isomerism ?	
	(A) $cis-[Cr(C_2 O_4)_2Cl_2]^{3-}$,	$cis-[Co(NH_3)_4Cl_2]$		
	(B) $[Co(en)_3]$ Cl_3 , cis- $[Co$	(en) ₂ Cl ₂]Cl		
	(C) [PtCl(dien)]Cl,[NiCl ₂ B	r ₂] ²⁻		
	(D) $[Co(NO_3)_3(NH_3)_3]$, cis	$-[Pt(en)_2Cl_2]$		
41.	The correct order for the	wavelength of absorption	in the visible resion is :	
	(A) $[Ni(NO_2)_6]^{4-} \le [Ni(NF_1)^{4-}]^{4-}$	$(H_3)_6]^{2+} \le [Ni(H_2O)_6]^{2+}$	(B) $[Ni(NO_2)_6]^{4-} \le [Ni(H_2)^{4-}]^{4-} \le [Ni(H_2)^{4-}]^{4-} \le [Ni(H_2)^{4-}]^{4-}$	$(O)_6]^{2+} < [Ni(NH_3)_6]^{2+}$
	(C) $[Ni(H_2O)_6]^{2+} \le [Ni(NI_2O)_6]^{2+}$	$(H_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$	(D) $[Ni(NH_3)_6]^{2+} \le [Ni(H_2)^{2+}]$	$(20)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
42.	Which one of the formoment?	ollowing cyano complex	xes would exhibit the l	lowest value of magnetic
	(A) [Cr(CN) ₆] ³⁻	(B) $[Mn(CN)_6]^{3-}$	(C) [Fe(CN) ₆] ³⁻	(D) [Co(CN) ₆] ³⁻
43.	The oxidation state of M	Mo in its oxo-complex spe	ecies $[Mo_2O_4(C_2H_4)_2(H_2O)_2]$	$[2]^{2-}$ is -
	(A) + 2	(B) $+ 3$	(C) + 4	(D) + 5
44.			om in the following species	:
	NH_3 , $[PtCl_4]^{2-}$, PCl_5 and	BCl ₃ is		
	(A) dsp^2 , dsp^3 , sp^2 , sp^3		(B) sp^3 , dsp^2 , dsp^3 , sp^2	
4 -	(C) dsp^2 , sp^2 , sp^3 , dsp^3	f 0 04) 1	(D) dsp^2 , sp^3 , sp^2 , sp^3	
45.	$[Cr(H_2O)_6]$ Cl_3 (at, no. of electrons in the Chromium			ne correct distribution of 3d
	(A) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{z^2}^1$		(B) $(3d_{x^2-y^2})^1$, $3d_{z^2}^1$, $3d_{z^2}^1$	d_{xz}^1
	(C) $3d_{xz}^1$, $(3d_{x^2-y^2})^1$, $3d_{xz}^2$	1_{yz}^1	(D) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{xz}^1$	
46.	[Co (NH ₃) ₄ (NO ₂) ₂]Cl ex	hibits		
	(A) linkage isomerism, ge	eometrical isomerism and	optical isomerism	
	(B) linkage isomerism, io	nization isomerism and op	tical isomerism	
	(C) linkage isomerism, io	nization isomerism and ge	ometrical isomerism	
	(D) ionization isomerism,	geometrical isomerism and	d optical isomerism	
47.	The pair in which both	species have same magn	etic moment (spin only va	lue) is –
	(A) $[Cr(H_2O)_6]^{2+}$, $[CoCl_4]$]2-	(B) $[Cr(H_2O)_6]^{2+}$, $[Fe(H_2O)_6]^{2+}$	O_{6}^{2+}
	(C) $[Mn(H_2O)_6]^{2+}$, $[Cr(H_2O)_6]^{2+}$	₂ O) ₆] ²⁺	(D) [CoCl ₄] ²⁻ , [Fe(H ₂ O) ₆	$]^{2+}$
48.	Among the following th	e species having same ge	eometry for central atom a	are
	(i) XeF ₄	(ii) SF ₄	(iii) [NiCl ₄] ²⁻	(iv) [PdCl ₄] ²⁻
	(A) (i) and (iv)	(B) (i), (iii) and (iv)	(C) (ii) and (iii)	(D) (iii) and (iv)

49.	For [FeF ₆] ³⁻	and	$[Fe(CN)_6]^{3-}$	magnetic	moment	of the	e fluoride	comp	olex is	expected	to be-
-----	---------------------------------------	-----	-------------------	----------	--------	--------	------------	------	---------	----------	--------

- (A) The same as the magnetic moment of the cyanide complex
- (B) Larger than the magnetic moment of the cyanide complex because there are more unpaired electrons in the fluoride complex
- (C) Smaller than the magnetic moment of the cyanide complex because there are more unpaired electrons in the fluoride complex
- (D) Larger than the magnetic moment of the cyanide complex because there are few unpaired electrons in the fluoride complex

50. Coordination compounds which contain cyanide (CN⁻) ligands tend to be yellow where as coordination compounds which contain water (H2O) ligands tend to be blue or green because -

- (A) The complexes diffract light at different angles
- (B) Cyanide is a weak-field ligand and water is a strong-field ligand
- (C) Cyanide is a strong-field ligand and water is a weak-field ligand
- (D) Cyanide compounds absorb yellow light and water compounds absorb blue or green light
- 51. Which of the following complexes is not a chellate -
 - (A) bis (dimethylglyoximato) nickel(II)
 - (B) Potassium ethylenediaminetetrathiocyanato chromate (III)
 - (C) pantamminecarbonatocobalt (III) nitrate
 - (D) Trans-diglycinatoplatinum (II)
- The stability constants of the complexes formed by a metal ion M2+ with NH3, CN-, H2O are of the order 52. of 10^{15} , 10^{27} , 10^{11} respectively. Then –
 - (A) NH₃ is the strongest ligand
 - (B) CN⁻ is the strongest ligand
 - (C) These values cannot predict the strength of the ligand
 - (D) All the ligands are equally strong
- 53. $\text{Fe}_4[\text{Fe}(\text{CN})_6]_3$ a blue coloured complex. Average oxidation number of Fe in $\text{Fe}_4[\text{Fe}(\text{CN})_6]_3$ is 'a' oxidation state of centeral iron atom 'b' oxidation state of counter iron atom 'c', a,b,c are respectively -

(A)
$$+\frac{3}{2}$$
, $+2$, $+3$ (B)

(B)
$$+\frac{5}{2}$$
, $+3$, $+2$

(C)
$$+\frac{18}{7}$$
, $+2$, $+3$

(A)
$$+\frac{5}{2}$$
, $+2$, $+3$ (B) $+\frac{5}{2}$, $+3$, $+2$ (C) $+\frac{18}{7}$, $+2$, $+3$ (D) $+\frac{18}{7}$, $+3$, $+2$

54. Which of the following is correct about

Tetraamminedithiocyanato-S-cobalt(III) tris(oxalato)cobaltate(III)?

- (A) Formula of the complex is $[Co(NH_3)_4(SCN)_2][Co(ox)_3]$
- (B) It is a chelating complex and show linkage isomerism
- (C) It shows optical isomerism
- (D) It show geometrical isomerism

55. Select the correct statement about given square planar complex.

$$C_{6}H_{5}$$
 $C_{6}H_{5}$
 $C_{6}H_{5}$
 $C_{6}H_{5}$
 $C_{6}H_{5}$
 C_{7}
 $C_{8}H_{5}$
 C_{8}
 $C_{$

- (A) It has no geometrical isomer
- (B) It is optically active because it does not have plane of symmetry
- (C) It is optically inactive because square planar complex have plane of symmetry
- (D) It is optically active because it has symmetric carbon.
- **56.** Total number of stereo isomers of [Co(acac)₂BrCl]⁻ are:
 - (A) 4

(B) 3

(C) 6

- (D) 2
- **57.** Match list-I (Species) with List-II (Hybrid orbitals used by the central atom in their formation) and select the correct answer:

	Column-II
(1)	${\sf sp}^3$
(2)	${\sf dsp}^2$
(3)	$\mathrm{sp}^3\mathrm{d}_{z^2}$
(4)	$d_{x^2-y^2}sp^3$

Codes :

	a	b	С	d
(A)	1	3	2	4
(B)	3	4	2	1
(C)	4	2	1	3
(D)	4	3	2	1

- 58. Which of the following is correct IUPAC name of any complex compound?
 - (A) Tris (acetylacetonato)iron(III) chloride
 - (B) Hexachloroplatinum(IV) tetraamminedicyanoplatinate(IV)
 - (C) Amminebromochloromethylamineplatinum(II)
 - (D) Cis-dichloro(ethylenediamine)platinum(II)
- **59.** Which of ther following statement(s) is (are) correct?
 - (A) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in the magnetic properties
 - (B) The complexes $[\mathrm{NiCl_4}]^{2-}$ and $[\mathrm{NiCN_4}]^{2-}$ differ in the geometry
 - (C) The complexes $[\mathrm{NiCl_4}]^{2-}$ and $[\mathrm{NiCN_4}]^{2-}$ differ in primary valencies of nickel
 - (D) The complexes $[NiCl_4]^{2-}$ and $[NiCN_4]^{2-}$ differ in the state of hybridization of nickel.

Which of the following statement(s) is/are correct with reference to Fe^{2+} and Fe^{3+} ions? 60. (1) Fe³⁺ gives brown colour with potassium ferricyanide (2) Fe²⁺ gives blue colour with potassium ferricyanide (3) Fe³⁺ gives red colour with potassium thiocyanate (4) Fe²⁺ gives brown colour with ammonium thiocyanate (C) 1, 2, 3 (A) 1, 2 (B) 1, 4 (D) All of these 0.001 mol of Co(NH₃)₅(NO₃)(SO₄) was passed through a cation exchanger and the acid coming out of 61. its required 20 ml of 0.1 M NaOH for neutralisation. Hence, the complex is -(B) $[CoNO_3(NH_3)_5]SO_4$ (A) $[CoSO_4(NH_3)_5]NO_3$ (C) $[Co(NH_3)_5]$ (SO₄) (NO₃) (D) None of these The IUPAC name of the red coloured complex $[\mathrm{Fe}(\mathrm{C_4H_7O_2N_2})_2]$ obtained from the reaction of $\mathrm{Fe^{2+}}$ and 62. dimethyl glyoxime -(A) bis(dimethyl glyoxime) ferrate(II) (B) bis (dimethyl glyoximato) iron(II) (C) bis (2, 3-butanediol dioximato) iron(II) (D) bis (2, 3-butanedione dioximato) iron(II) An ion M^{2+} , forms the complexes $[M(H_2O)_6]^{2+}$, $[M(en)_3]^{2+}$ and $[MBr_6]^{4-}$, Match the complex with the 63. appropriate colour -(A) Green, blue and red (B) Blue, red and green (C) Green, red and blue (D) Red, blue and green

	ANSWER KEY																			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	С	A,B,E	A,B,C	D	В	Α	A,C,D	С	С	D	С	С	В	A,C,D	A,B	D	С	С	В	С
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	В	A,B	С	Α	В	D	В	В	B,C	В	С	С	С	Α	D	B,C,D	С	A,C,D	С	В
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	Α	D	В	В	D	С	В	Α	В	С	С	В	С	B,C,D	В	В	D	С	A,B,D	С
Que.	61	62	63																	
Ans.	В	В	В																	

TRUE / FALSE

- 1. Coordination number and oxidation state of a metal means the same thing.
- 2. Stability of coordination compounds increases with increase in charge density of the metal ions.
- **3**. Fe(CO)₅ has trigonal bipyramidal geometry.
- **4.** $[NiCl_{4}]^{2-}$ is diamagnetic in nature.
- **5.** Metal Carbonyls are organometallic compounds.
- **6.** Both optical and geometrical isomerisms are shown by [Co(en), Cl₂]⁺.
- 7. The complex [Co(NH₂)₂Cl₂] is ionizable,
- 8. The complex ion trans-dichlorobis(ethylenediamine)rhodium(III) is optically active.

FILL IN THE BLANKS

- 1. A Solution of potassium ferrocyanide contains ions.
- **2.** EDTA $^{-4}$ is a ligand.
- 4. The coordination number and oxidation number of cobalt in $[Co(edta)]^{-1}$ are and respectively.
- **6.** $[Co(NH_3)_5 SO_4]Br$ and $[Co(NH_3)_5 Br]SO_4$ show isomerism.
- 7. One molecule of $[Pt(NH_3)_6]Cl_4$ gives ions in solution and requires of $AgNO_3$ for complete precipitation of chloride ions.
- 8. $[Pt(NH_3)(NH_2OH)(py)(NO_2)]NO_3$ has shape and has geometrical isomers.

MATCH THE COLUMN

1.		Column-I							
	(A)	[Ni(CN) ₄] ²⁻							
	(B)	[NiCl ₄] ²⁻							
	(C)	$[MnCl_4]^{2-}$							
	(D)	[Cu(NH ₃) ₄] ⁺²							

	Column-II					
(p)	Paramegnatic					
(q)	Diamegnatic					
(r)	Tetrahedral					
(s)	SQ. planar					

2.		Column-I							
	(A)	(A) Sodium nitroprusside							
	(B) Brown ring complex								
	(C) Complex of Ag formed during its								
		extraction							
	(D) Potassium ferrocyanide								

	Column-II
(p)	$\mu = 0 \text{ BM}$
(q)	Octahedral
(r)	$\mu = \sqrt{15} BM$
(s)	NO ⁺ ligand
(t)	cynide ligand is present

3.		Column-I					
		Co-ordination compound					
	(A)	[Co(NH ₃) ₄ Cl ₂]Br					
	(B)	[Co(en) ₂ Cl ₂]Cl					
	(C)	[Co(en) ₂ (NO ₂)Cl]SCN					
	(D)	[Co(NH ₃) ₆][Cr(F) ₆]					

	Column-II						
	Type of isomerism						
(p)	Optical isomerism						
(q)	Ionization isomerism						
(r)	Coordination isomerism						
(s)	Geometrical isomerism						
(t)	Linkage isomerism						

ASSERTION & REASON QUESTIONS

These questions contains, Statement-I (assertion) and Statement-II (reason).

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I

(B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I

(C) Statement-I is True, Statement-II is False.

(D) Statement-I is False, Statement-II is True.

1. Statement-I: K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ is a double salt compound.

Because

Statement-II : It ionises to give a complex ion.

2. Statement-I : $[Fe(CO)_5]$ is dimagnetic complex.

Because

Statement-II: In the given complex oxidation state of Iron is zero.

3. Statement-I: $[Ni(CN)_4]^{-2}$ has zero unpaired electron while that of $[NiCl_4]^{-2}$ has two unpaired e^-

Because

 $\textbf{Statement-II} \quad : \qquad [Ni(CN)_4]^{-2} \text{ has strong crystal field while } [NiCl_4]^{-2} \text{ has weak crystal field}$

4. Statement-I: K₂[PtCl₆] gives white ppt when reacts with AgNO₃

Because

Statement-II: Chloride ion in the complex is non-ionisable.

5. Statement-I: Trans $[CoCl_2(en)_2]^+$ is optically inactive.

Because

Statement-II: It has plane of symmetry.

6. Statement-I: Cis - $[Fe(en)_2Cl_2]^+$ can form recemic mixture.

Because

Statement-II: Cis - $[Fe(en)_2Cl_2]^+$ is optically active square planar complex.

7. Statement-I: Potassium ferrocyanide is diamagnetic whereas potassium ferricyanide is

paramagnetic.

Because

Statement-II : Crystal field spliting in ferrocyanide ion is greater than that of ferricyanide ion.

8. Statement-I : $[Co(NO_2)_3(NH_3)_3]$ does not show optical isomerism.

Because

Statement-II: It has plane of symmetry.

9. Statement-I: C-C bond length in zeise's salt is same as ethylen.

Because

Statement-II: Double bond is shorter as compaire to single bond.

10. Statement-I: Hydrazine is a neutral ligand.

Because

Statement-II: It has two N as donor atoms and behaves as a chelating ligand.

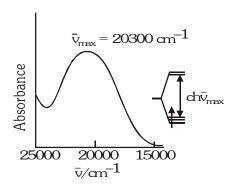
 $[Ti(H_2O)_6]^{4+}$ is coloured while $[Sc(H_2O)_6]^{3+}$ is colourless. 11. Statement-I

Because

d-d transition is not possible in $[Sc(H_2O)_6]^{3+}$. Statement-II

Statement-I EAN of Fe in ferrocene is 36. 12.

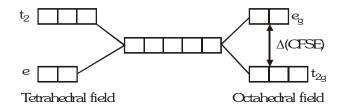
Because


 6π e⁻ are co-ordinated by each cyclo pentadien ring with central metal ion. Statement-II

COMPREHENSION BASED QUESTIONS

Comprehension # 1

With the help of CFT number of unpaired electron in a compound can be calculated and we can calculate its paramagnetic moment (due to spin only), by the formula:


 $\mu = \sqrt{n(n+2)}$ Bohr magneton (BM), where 'n' is the number of unpaired electron in the complex. For spectral analysis the separation between t_{2g} and e_g orbitals, called ligand field splitting parameter Δ_0 (for octahedral complexes) should be known to us, which can be easily calculated by observing the absorption spectrum of one e- complex figure shows the optical absorption spectrum of the d1 hexaaquatitanium (III) ion $[Ti(H_2O)_6]^{3+}$. The CFT assigns the first absorption maximum at 20,300 cm⁻¹ to the transition $e_q \leftarrow t_{2q}$. For multielectronic (d² to d¹⁰) system, the calculation of Δ_0 by absorption spectrum is not that easy as the absorption spectrum will also be affected by electron-electron repulsions.

- The crystal field stabilization energy (CFSE) for complex given in the passage, $[Ti(H_2O)_6]^{3+}$ will be (in kJ/mol) 1.
 - (A) 243 kJ/mole
- (B) 97 kJ/mole
- (C) 194 kJ/mole
- (D) 143 kJ/mole
- 2. The complex for which the calculation of crystal field splitting can be most easily done, by knowing its absorption spectrum, will be -
 - (A) [TiCl₆]²⁻
- (B) $[Fe(H_2O)_6]^{2+}$
- (C) [Ti(CN)₆]³⁻
- (D) $[CoF_6]^{3-}$
- The magnetic moments of following, arranged in increasing order will be (atomic number of Co = 27) 3.
 - (1) Co^{3+} (octahedral complex with a strong field ligand)
 - (2) Co³⁺ (octahedral complex with a weak field ligand)
 - (3) Co²⁺ (tetrahedral complex)
 - (4) Co²⁺ (square planar complex)
 - (A) 1 > 2 > 3 > 4 (B) 2 > 3 > 4 > 1 (C) 3 > 2 > 4 > 1 (D) 2 > 4 > 3 > 1

Comprehension#2

When degenerate d-orbitals of an isolated atom/ion come under influence of magnetic field of ligands, the degeneracy is lost. The two set $t_{2g}(d_{xy}, d_{yz}, d_{xz})$ and eg $(d_{z^2}, d_{z^2-z^2})$ are either stabilized or destrabilized depending upon the nature of magnetic field. It can be expressed diagrammatically as:

Value of CFSE depends upon nature of ligand and a spectrochemical series has been made experimentally, for tetrahedral complexes, Δ is about 4/9 times to Δ_0 (CFSE for octahedral complex). This energy lies in visible region and i.e., why electronic transition are responsible for colour. Such transitions are not possible with d^0 and d^{10} configuration.

- The CFSE for $[CoCl_6]^{4-}$ complex is 18000 cm⁻¹. The Δ for $[CoCl_4]^{2-}$ will be -1.
 - (A) 18000 cm^{-1}
- (B) 16000 cm^{-1} (C) 8000 cm^{-1}
- (D) 2000 cm^{-1}
- The d-orbitals, which are stabilised in an octahedral magnetic field, are -2.
 - (A) d_{xy} and d_{z^2}
- (B) $d_{y^2-y^2}$ and d_{z^2} (C) d_{xy} , d_{xz} and d_{yz}
- (D) d_{2} only
- 3. For an octahedral complex, which of the following d-electron configuration will give maximum CFSE?
 - (A) High spin d⁶
- (B) Low spin d⁴
- (C) Low spin d⁵
- (D) High spin d⁷

- $Ti^{3+}_{(aq)}$ is purple while $\,Ti^{4+}_{(aq)}\,$ is colourless because 4.
 - (A) There is no crystal field effect in Ti4+
 - (B) There energy difference between t_{2g} and e_{g} of Ti^{4+} is quite high and does not fall in the visible region
 - (C) Ti⁴⁺ has d⁰ configuration.
 - (D) Ti⁴⁺ is very small in comparision to Ti³⁺ and hence does not absorb any radiation.
- Crystal field stabilization energy for $[CoF_6]^{3-}$ in terms of parameter Dq is ($\Delta = 10Dq$) 5.
 - (A) 4

(D) 24

MI	SCELLANE	OUS TYPE	QUESTION	A	ANSWER	KEY		E	XERCISE -3
•	<u>True /</u>	<i>False</i>							
	1 .F	2 .T	3 .T	4 .F	5 .T	6 .T	7 .F	8 .F	
•	Fill in	the Blan	<u>ks</u>						
	1. Five	2. hexader	ntate 3.Co-o	rdination no.	& satisfied b	y ligand 4 . S	Six &+3 5 .	EAN 6 .	Ionization
	7 . Five	& Four 8 .	. Square pla	ner, 3					
•	<u>Match</u>	the Colu	ımn						
	1 . (A)-q	,s (B) p,r (0	C)-p,r (d)-p,s	2. (A)-p,q,	s,t (B)-q,r,s (C)-p,t (D)-p,q,1	t		
	3 . (A)-q	,s (B)-p,s (0	C)-p,q,s,t (D))-r					
•	<u>Asserti</u>	on - Rea	son Quest	ions					
	1 . C	2 . B	3 . A	4 . D	5 . A	6 . C	7 . C	8 . A	9 . D
	10 . C	11 . D	12 . A						

Comprehension Based Quesions

Comprehension #1: 1. B

2. C 3. B

Comprehension #2:1. C

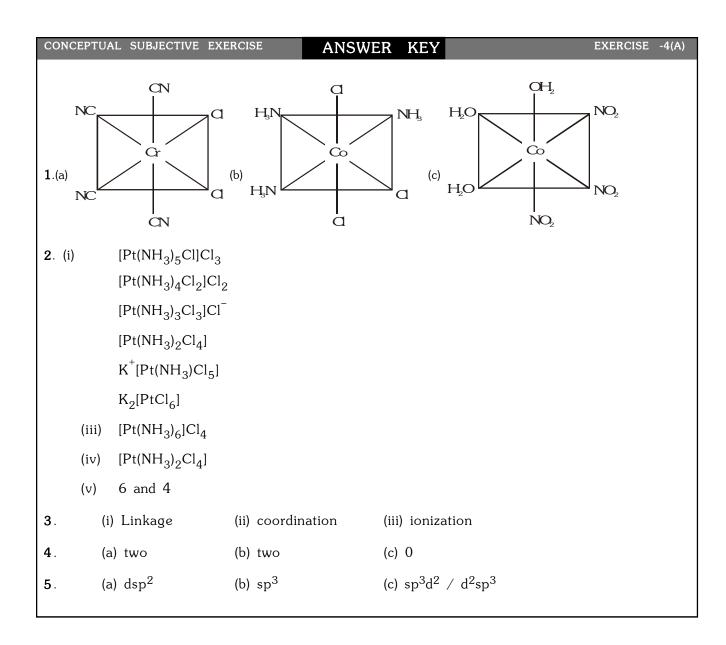
2. C

4. C 3. C

5. A

9.

10.


- 1. Draw the structure of (a) Cis-dichlorotetracyano-chromate(III), (b) Mer-triamminetrichlorocobalt(III) (c) Fac-triaquatrinitrito-N-cobalt(III) 2. Combination of Pt(IV), NH₂, Cl⁻ and K⁺ results in the formation of seven complexes and one such complex is [Pt(NH₃)₆]Cl₄ (i) Write the formula of the other six members of series. (ii) Name these complexes according IUPAC system of nomenclature. (iii) Which will have highest molar conductivity? (iv) Which of these is non-ionic? (v) What is the coordination number and oxidation state of Pt in these complexes. 3. What type of isomers are the following: (i) [(CO)₅MnSCN] and [(CO)₅MnNCS], (ii) $[Co(en)_3][Cr(CN)_6]$ and $[Cr(en)_3][Co(CN)_6]$ (iii) $[Co(NH_3)_5NO_3]SO_4$ and $[Co(NH_3)_5SO_4]NO_3$ 4. How many geometrical isomer are possible : (a) $[Co(NH_3)_2Cl_4]^-$, octahedral? (b) [AuCl₂Br₂]⁻, square planar? (c) [CoCl₂Br₂]²⁻, tetrahedral? 5. What are the types of hybridization involved in the following geometrical shapes of the complex? (a) Square planar, (b) Tetrahedral, (c) Octahedral 6. On the basis of CFT, explain the following, giving appropriate reasons for your answer: (1) The magnetic moment of $[Fe(H_{\nu}O)_{\varepsilon}]^{3+}$ ion is 5.92 B.M. and that of $[Fe(CN)_{\varepsilon}]^{3-}$ ion is 1.73 B.M. (2) [Fe(CN)_c]³⁻ ion is weakly paramagnetic while [Fe(H₂O)_c]³⁺ ion strongly paramagnetic (3) Complexes of Co(III) like $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$ and $[Co(NO_3)_6]^{3-}$ are diamagnetic while $[CoF_6]^{3-}$ and $[Co(H_2O)_3F_3]$ are paramagnetic. (4) $[Co(CN)_c]^{4-}$ ion is paramagnetic while $[Co(CN)_c]^{3-}$ ion is diamagnetic, although both the ions have strong ligands. 7. Which of the following pairs of complex ions has higher value of Δ_0 and why? (b) $[Fe(C_2O_4)_2]^{4-}$ and $[Fe(C_2O_4)_2]^{3-}$ (a) $[Co(NH_2)_{\epsilon}]^{3+}$ and $[Rh(NH_2)_{\epsilon}]^{3+}$ (c) $[Cr(en)_3]^{3+}$ and $[Cr(C_2O_4)_3]^{3-}$ 8. Discuss the geometry of [HgI₂] ion on the basis of valence bond theory.

Calculate CFSE values for the following system:

Calculate CFSE of the following complexes: (i) [CoF₂]³⁻ (ii) [Fe(CN)₂]⁴⁻ (iii) [Cu(NH₂)₂]²⁺

(i) d^1 - octahedral (ii) d^1 - tetrahedral (iii) d^5 - low spin octahedral (iv) d^5 - high spin octahedral

- 11. Write the formula of the following compounds :
 - (i) di-µ-carbonyl octacarbonyl diiron(0)
 - (ii) Ammonium aquapentafluoronickelate(IV)
 - (iii) Tetrammineaquabromocobalt(III) chloride
 - (iv) Sodium dithiosulphatoargentate(I)
 - (v) Bromodichloroiodopalladate(II) ion
- 12. Explain how $[Pt(NH_3)_2Cl_2]$ and $[Pt(NH_3)_6]Cl_4$ will differ in their electrolytic conductance, Give the hybridisation state of Pt in these compounds. (At. No. of Pt is 78)
- 13. A coordination compound has the formula CoCl₃ . 4NH₃. It does not liberate ammonia but precipitates Chloride ion as AgCl. Give the IUPAC name of the complex and write its structural formula.
- 14. What is the coordination entity formed when excess of aqueous KCN is added to an aqueous solution of copper sulphate? Why is it that no precipitate of copper sulphide is obtained when $H_2S(g)$ is passed through this solution?

- 1. Draw all the possible isomers of the following complexes - $[Pt\ (NH_3)_4Cl_2]^{2+},\ [Pt\ (gly)_2]^0,\ [Pt\{P(C_2H_5)_3\}_2Cl_2],\ [Cr(NH_3)(OH)_2Cl_3]^{2-},\ [Pt(NH_3)(NH_2OH)(py)(NO_2)]^+,$ $[Co(en)Cl_2Br_2]^{-}$, $[Rh(py)_3Cl_3]^0$, $[Co(en)Cl_3Br]^{-}$
- 2. Arrange the following pairs of complex ions on the basis of their crystal field splitting parameters (Δ_0): (a) $[V(H_0O)_c]^{2+}$ and $[V(H_0O)_c]^{3+}$ (b) $[Fe(CN)_c]^{4-}$ and $[Os(CN)_c]^{4-}$
- 3. A complex of the type (M(AA)_aX_a] is known to be optically active. What does this indicate about the structure of the complex? Give one example of such complex.
- 4. A complex of the type [M(AB)a] is known to be opticall active. What does this indicate about the structure of the complex? Give one example of such complex.
- 5. [Ni(Cl)₂(P(CH₂)₃)₃] is a paramagnetic complex of Ni(II). Analogous Pd(II) complex is diamagnetic. How many geometrical isomers will be possible for Ni(II) and Pd(II) complexes? Also explain their magnetic behaviour.
- On the basis of CFT give the electronic configuration of Rh²⁺ ion in an octahedral complex for which $\Delta_0 > P$. 6.
- Two compounds have the empirical formula, $Co(NH_3)_3(NO_2)_3$. In aqueous solution one of these compounds does 7. not conduct electricity while the other does. Write the possible structures of these two compounds.
- 8. Compute CFSE (in terms of Δ_0) values for d⁷ (octahedral) and d⁷ (tetrahedral) ions in strong field.

BRAIN STORMING SUBJECTIVE EXERCISE

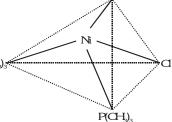
ANSWER KEY

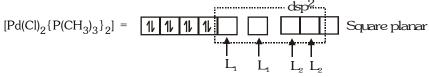
EXERCISE -4(B)

5. (Hint)- Ni(II) complex is paramagnetic, so it has unpaired electrons while complex of Pd(II) is diamagnetic without any unpaired electron. In both Ni(II) and Pd (II), there is d⁸ configuration. In Ni(II), value of crystal field splitting energy (Δ) is less than in Pd(II). So in Ni(II) pairing is less favoured while in Pd(II), all electrons are paired because unpairing is unfavoured owing to high value of CFSE. Thus the geometry and hybridization in two complexes is explained as follows:

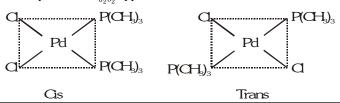
$$[\mathrm{Ni(Cl)}_2\{\mathrm{P(CH_3)}_3\}_2] = \boxed{1 \ 1 \ 1 \ 1 \ 1} \boxed{1} \boxed{\bullet \bullet \bullet \bullet \bullet} \qquad \text{Tetrahedra}$$

$$L_1 \quad L_1 \quad L_2 \quad L_2$$


$$Cl^- = W.F.L.$$
 $P(CH_3)_3 = S.F.L.$ $L_1 = Cl^-$


L.
$$I(CI_3)_3 = 0.1.L$$
. $L_1 = CI$ $L_2 = I(CII)$

C.F.S.E. > P.E. irrespective of ligand Pd(II) -


C.F.S.E < P.E. for W.F.L. & C.F.S.E. > P.E. for S.F.L. Ni(II) -

because complex is tetrahedral so only one structure will be possible P(CH)3*

So it is complex of $M_{a_2b_2}$ type and will exist as cis and trans isomer. a,b = mondentate ligands.

In $[\mathrm{Cr}(\mathrm{C_2O_4)_3}]^{3-}$, the isomerism shown is

1.

[AIEEE-2002]

	(A) Ligand	(B) Optical	(C) Geometrical	(D) Ionization	
2.	In the complexes [Fe(H ₂)	O) ₆] ³⁺ , [Fe(SCN) ₆] ³⁻ , [Fe(C ₂ C	$(O_4)_3]^{3-}$ and $[FeCl_6]^{3-}$, mos	re stability is sho	wn by
	_				[AIEEE-2002]
	(A) $[Fe(H_2O)_6]^{3+}$	(B) $[Fe(SCN)_6]^{-3}$	(C) $[Fe(C_2O_4)_3]^{3-}$	(D) [FeCl ₆] ³⁻	
3.	One mole of the complex	x compound $Co(NH_3)_5Cl_3$,	gives 3 moles of ions or	n dissolution in w	ater. One mole of
		with two moles of ${\rm AgNO_3}$			
	complex is				[AIEEE-2003]
	(A) $[Co(NH_3)_3Cl_3]$. $2NH_3$		(B) $[Co(NH_3)_4Cl_2]$ Cl.N	$1H_3$	
	(C) [Co(NH ₃) ₄ Cl] Cl ₂ .NH ₃	3	(D) $[Co(NH_3)_5Cl]Cl_2$		
4.	In the coordination comp	pound $K_4[Ni(CN)_4]$, the oxiden	dation state of nickel is	-,	[AIEEE-2003]
	(A) 0	(B) +1	(C) +2	(D) -1	
5.	The number of 3d-electr	ons remained in Fe ²⁺ (At.1	no. of Fe = 26) ion is -	-	[AIEEE-2003]
	(A) 4	(B) 5	(C) 6	(D) 3	
6.	Ammonia forms the com	plex ion $[Cu(NH_3)_4]^{2+}$ with	copper ions in alkaline	solutions but not	in acidic solution.
	What is the reason for it		• •		[AIEEE-2003]
	(A) In acidic solutions hy	dration protects copper io	ns		
	(D) In a state and attended	-4		NIII+ tama and P	NII I
		otons coordinate with amm	nonia molecules forming	NH ₄ ions and i	NH ₃ molecules are
	not available				
	(C) In alkaline solutions i	insoluble Cu(OH) ₂ is precip	pitated which is soluble	in excess of any	alkali
	(D) Copper hydroxide is	an amphoteric substance			
7.		reducing (b) oxidising (c) c	complexing, the set of pr	operties shown b	
	metal species is :-				[AIEEE-2004]
	(A) c, a	(B) b, c	(C) a, b	(D) a, b, c	
8.	The coordination number	r of a central metal atom i	n a complex is determin	ned by :-	[AIEEE-2004]
	(A) The number of ligan	ds around a metal ion bor	nded by sigma and pi-bo	onds both	
	(B) The number of ligan	ds around a metal ion bor	nded by pi-bonds		
	(C) The number of ligan	ds around a metal ion bor	nded by sigma bonds		
	(D) The number of only	anionic ligands bonded to	the metal ion		
9.	Which one of the follow	ing complexes is an outer	orbital complex :-		[AIEEE-2004]
	(A) $[Co(NH_3)_6]^{3+}$	(B) $[Mn(CN)_6]^{4-}$	(C) $[Fe(CN)_6]^{4-}$	(D) [Ni(NH ₃)	₆] ²⁺
	(Atomic nos.:Mn=25; F	Fe=26 ; Co=27 ; Ni = 28)			
10.	Coordination compounds	s have great importance in	n biological systems. In	this contect whic	h of the following
	statements is incorrect?				[AIEEE-2004]
		itamin B_{12} and contains co			
		red pigment of blood and			
		en pigments in plants and A is an enzyme and contai			
	(L) Carooxypepiidase - I	i is an enzyme and collia	IIIS ZIIIC		

11.	The correct order of ma	agnetic moments (spin only	values in B.M.) among is	:-[AIEEE-2004]
	(A) $[Fe(CN)_6]^{4-} > [MnCl_4]^{4-}$	$]^{2-} > [CoCl_4]^{2-}$	(B) $[MnCl_4]^{2-} > [Fe(CN)_6]$	$]^{4-} > [CoCl_4]^{2-}$
	(C) $[MnCl_4]^{2-} > [CoCl_4]^2$	> [Fe(CN) ₆] ⁴⁻	(D) $[Fe(CN)_6]^{4-} > [CoCl_4]^{4-}$	$]^{2-} > [MnCl_4]^{2-}$
	(Atomic nos. : $Mn = 25$	5, Fe = 26, Co = 27)		
12.	For octahedral complex, is 2.84 BM. The correct		y' magnetic moment for on	te of the following configurations [AIEEE-2005]
	(A) d ⁴ (in strong ligand f	ield)	(B) d^4 (in weak ligand figure	eld)
	(C) d^3 (in weak as well a	as in strong field)	(D) d^5 (in strong ligand f	ield)
13.	The IUPAC name for th	ne complex [Co(NO ₂) (NH ₃)	₅]Cl ₂ is	[AIEEE-2006]
	(A) pentaammine nitrito	-N- cobalt (II) chloride	(B) pentaammine nitrito-	N- cobalt (III) chloride
	(C) nitrito-N- pentaamm	inecobalt (III) chloride	(D) nitrito-N- pentaamm	inecobalt (II) chloride
.4.		with a uninegative monodered electron in the nickel		paramagnetic complex $[NiX_4]^{2-}$ plex ion are, respectively. [AIEEE-2006]
	(A) one, square planar	(B) two, square planar	(C) one, tetrahedral	(D) two, tetrahedral
l5.	In Fe (CO) $_5$, the Fe-C	bond possesses		[AIEEE-2006]
	(A) ionic character	(B) σ – character only	(C) π -character only	(D) both σ and π character
16.	How many EDTA (ethylo a Ca^{2+} ion ?	enediaminetetraacetic acid) 1	molecules are required to r	nake an octahedral complex with [AIEEE-2006]
	(A) One	(B) Two	(C) Six	(D) Three
۱7.	The "spin-only" magneti No. Ni= 28)	c moment [in units of Bohr	magneton, (μ_B)] of Ni^{2+} ir	n aqueous solution would be (At. [AIEEE-2006]
	(A) 0	(B) 1.73	(C) 2.84	(D) 4.90
8.	Which one of the follow	wing has a square planar g	geometry :- (Co = 27, Ni	= 28, Fe=26, Pt = 78)
				[AIEEE-2007]
^	(A) [CoCl ₄] ²⁻	(B) [FeCl ₄] ²⁻	(C) [NiCl ₄] ²⁻	(D) [PtCl ₄] ²⁻
l9.		umber and the oxidatere (en) is ethylene diamine) (B) 4 and 2		ement 'E' in the complex [AIEEE-2008] (D) 6 and 3
20.	In which of the following	g octahedral complexes of C	Co (at. no. 27), will the mag	gnitude of Δ_0 be the highest ?
21.		(B) $[Co(C_2O_4)_3]^{3-}$ pairs represents linkage iso	2 0	[AIEEE-2008] (D) [Co(NH ₃) ₆] ³⁺ [AIEEE-2009]
	(A) $[Co(NH_3)_5NO_3]SO_4$ a			
	(B) $[PtCl_2(NH_3)_4]Br_2$ and			
	(C) $[Cu(NH_3)_4][PtCl_4]$ and			
	(D) [Pd (PPh ₃) ₂ (NCS) ₂] a	114 [TU		

22. Which of the following has an optical isomer? [AIEEE-2009] (A) $[Co(H_2O)_4(en)]^{3+}$ (B) $[Co(en)_2(NH_3)_2]^{3+}$ (C) $[Co(NH_3)_3Cl]^+$ (D) $[Co(en)(NH_3)_2]^{2+}$ 23. Which one of the following has an optical isomer? [AIEEE-2010] (C) $[Co(en)_3]^{3+}$ (A) $[Zn(en)_2]^{2+}$ (B) $[Zn(en)(NH_3)_2]^{2+}$ (D) $[Co(H_2O)_4(en)]^{3+}$ (en = ethylenediamine) A solution containing 2.675 g of CoCl₃.6NH₃ (molar mass = 267.5 g mol⁻¹) is passed through a cation exchanger. 24. The chloride ions obtained in solution were treated with excess of AgNO3 to give 4.78 g of AgCl (molar mass = 143.5 g mol^{-1}). The formula of the complex is :-[AIEEE-2010] (At. mass of Ag = 108 u) (A) [CoCl(NH₃)₅]Cl₂ (C) $[CoCl_2(NH_3)_4]Cl$ (B) $[Co(NH_3)_6]Cl_3$ (D) $[CoCl_3(NH_3)_3]$ 25. Which of the following facts about the complex [Cr(NH₃)₆]Cl₃ is wrong? [AIEEE-2011] (A) The complex is an outer orbital complex (B) The complex gives white precipitate with silver nitrate solution (C) The complex involves d²sp³ hybridisation and is octahedral in shape (D) The complex is paramagnetic The magnetic moment (spin only) of $[NiCl_4]^{2-}$ is :-[AIEEE-2011] (B) 1.41 BM (A) 2.82 BM (C) 1.82 BM (D) 5.46 BM 27. Among the ligands NH₃,en, CN- and CO the correct order of their increasing field strength, is :-[AIEEE-2011] (A) $CO < NH_3 < en < CN$ (B) $NH_3 \le en \le CN^- \le CO$ (C) CN- < NH₃ < CO < en (D) en < CN $^-$ < NH $_3$ < CO 28. Which one of the following complex ions has geometrical isomers? [AIEEE-2011] (A) $[Co (en)_3]^{3+}$ (B) $[Ni (NH_3)_5Br]^+$ (C) $[Co (NH_3)_2 (en)_2]^{3+}$ (D) $[Cr (NH_3)_4(en)]^{3+}$ 29. Which among the following will be named as dibromidobis (ethylene diamine) chromium (III) bromide? [AIEEE-2012] (D) [Cr(en)Br₄] (A) [Cr(en)Br₂]Br (B) $[Cr(en)_3]Br_3$ (C) $[Cr(en)_2Br_2]Br$ (A) $[Co(en)_3]^{3+}$ (B) $[Co(en)_2 Cl_2]^+$ [J-MAIN-2013]

30. Which of the following complex species is not expected to exhibit optical isomerism?

(C) $[Co(NH_3)_3 Cl_3]$ (D) $[Co(en) (NH_3)_2Cl_2]^+$

JEE-MAIN ANSWER KEY EXERCISE -5[SE -5[A]				
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	C	D	A	С	В	A	С	D	С
Que.	11	12	13	14	15	16	17	18	19	20
	С	A	В	D	D	A	С	D	D	A
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	D	В	С	В	A	A	В	С	С	С

MCQ's WITH ONE CORRECT ANSWER

1.	Which of the following	is an organometallic compo	ound?		[1997; 1M]
	(A) Lithium methoxide		(B) Lithium acetate		
	(C) Lithium dimethylamid	de	(D) Methyl lithium		
2.	The geometry of Ni(CC	$(PPh_3)_2Cl_2$ are -			[1999; 2M]
	(A) Both square planar		(B) Tetrahedral and squ	are planar, respe	ectively
	(C) Both tetrahedral		(D) Square planar and	tetrahedral, respe	ectively.
3.	Amongst the following,	identify the species with ar	n atom in +6 oxidation state	2 -	[2000; 2M]
	(A) MnO_{4}^{-}	(B) $Cr(CN)_{6}^{3-}$	(C) NiF $_{6}^{2-}$	(D) CrO_2Cl_2	
4.	The complex ion which	has no 'd'-electrons in the	central metal atom is -		[2001; 2M]
	(A) $[MnO_4]^-$	(B) $[Co(NH_3)_6]^{3+}$	(C) [Fe(CN) ₆] ³⁻	(D) $[Cr(H_2O)_6]$	3+
5.	Mixture of $(X) = 0.02 \text{ r}$ of solution	nole of [Co(NH ₃) ₅ SO ₄]Br ar	nd 0.02 mole of [Co(NH $_3$) $_5$ E	3r]SO ₄ was prepa	red in 2 litre [IIT-2003]
	1 litre of mixture [X] $+$	$\operatorname{excess}\ \operatorname{AgNO}_3 \longrightarrow [Y]$			
	1 litre of mixture [X] $+$	$\operatorname{excess} \; \operatorname{BaCl}_2 \longrightarrow [\operatorname{Z}]$			
	Number of moles of [Y]	and [Z] are -			
	(A) 0.01, 0.01	(B) 0.02, 0.01	C) 0.01, 0.02	(D) 0.02, 0.02	
6.	The pair of compounds	having metals in their high	nest oxidation state is -		[IIT-2004]
	(A) MnO_2 , FeCl_3	(B) [MnO ₄] ⁻ , CrO ₂ Cl ₂	(C) $[Fe(CN)_6]^{3-}$, $[Co(CN)_6]^{3-}$] ³⁻ (D) [NiCl ₄] ²	?-, [CoCl ₄]-
7.	The compound having	tetrahedral geometry is -			[IIT-2004]
	(A) [Ni(CN) ₄] ²⁻	(B) [Pd(CN) ₄] ²⁻	(C) [PdCl ₄] ²⁻	(D) [NiCl ₄] ²⁻	
8.	Spin only magnetic mo	ment of the compound Hg[Co(SCN) ₄] is -		[IIT-2004]
	(A) $\sqrt{3}$	(B) $\sqrt{15}$	(C) $\sqrt{24}$	(D) $\sqrt{8}$	
9.	Which kind of isomeris	m is exhibited by octahedra	al Co(NH ₃) ₄ Br ₂ Cl?		[IIT-2005]
	(A) Geometrical and ion	nisation	(B) Geometrical and op	tical	
	(C) Optical and ionisation	on	(D) Geometrical only		
10.	Which pair of compour	nds is expeted to show simi	lar colour in aqueous medi	ım?	[IIT-2005]
	(A) FeCl_3 and CuCl_2	(B) $VOCl_2$ and $CuCl_2$	(C) $VOCl_2$ and $FeCl_2$	(D) FeCl ₂ and	MnCl ₂
11.	CuSO ₄ decolourises on	addition of excess KCN, th	ne product is -	IJ	IT-JEE-2006]
	(A) [Cu(CN) ₄] ²⁻	(B) [Cu(CN) ₄] ³⁻	(C) Cu(CN) ₂	(D) CuCN	

The co-ordination number of Ni^{+2} is = 4

 $NiCl_2$ + KCN (excess) \longrightarrow A (cyno complex)

NiCl₂ + Conc. HCl (excess) ----- B (Chloro complex)

- 12. The IUPAC name of A and B are -
 - (A) Potassium tetracyanonickelate(II), potassium tetrachloronickelate(II),
 - (B) Tetracyanopotassiumnickelate(II), tetrachloro potassiumnickelate(II),
 - (C) Tetracyanonickel(II), tetrachloronickel(II)
 - (D) Potassiumtetracyanonickel(II), Potassiumtetrachloronickel(II)
- 13. Predict the magnetic nature of A and B -
 - (A) Both are diamagnetic
 - (B) A is diamagnetic and B is paramagnetic with one unpaired electron
 - (C) A is diamagnetic and B is paramagnetic with two unpaired electrons
 - (D) both are paramagnetic
- 14. The hybridisation of A and B are -
 - (A) dsp^2 , sp^3
- (B) sp^{3} , sp^{3}
- (C) dsp^2 , dsp^2 (D) sp^3d^2 , d^2sp^3
- If the bond length of CO bond in carbon monoxide is 1.128 Å., then what is the value of CO bond length in 15. Fe(CO)₅? [IIT-2006]
 - (A) 1.15 Å
- (B) 1.128 Å
- (C) 1.72 Å
- (D) 1.118 Å
- 16. Among the following metal carbonyls, the C - O bond order is lowest in -

[IIT-2007]

- (A) $[Mn(CO)_{6}]^{+}$
- (B) [Fe(CO)₅]
- (C) $[Cr(CO)_6]$
- (D) $[V(CO)_6]^{-}$
- Sodium-fusion extract, obtained from aniline, on treatment with iron(II) sulphate and H2SO4 in presence of 17. air gives a Prussian blue precipitate. The blue colour is due to the formation of: [IIT-2007]
 - (A) $Fe_4[Fe(CN)_6]_3$
- (B) $Fe_3[Fe(CN)_6]_2$
- (C) $Fe_1[Fe(CN)_6]_2$
- (D) $Fe_3[Fe(CN)_6]_3$
- 18. Match the complexes in Column-I with their properties listed in Column-II (matrix match type) [IIT-2007]

Column-I		Column-II
A) $[Co(NH_3)_4(H_2O)_2]Cl_2$		geometrical isomers
$[Pt(NH_3)_2Cl_2]$	(q)	paramagnetic
[Co(H ₂ O) ₅ Cl]Cl	(r)	diamagnetic
$[Ni(H_2O)_6]Cl_2$	(s)	metal ion with +2 oxidation state
	$\begin{split} &[\mathrm{Co(NH_3)_4(H_2O)_2]Cl_2} \\ &[\mathrm{Pt(NH_3)_2Cl_2}] \\ &[\mathrm{Co(H_2O)_5Cl]Cl} \end{split}$	$ [\text{Co(NH}_3)_4(\text{H}_2\text{O})_2]\text{Cl}_2 $ (p) $ [\text{Pt(NH}_3)_2\text{Cl}_2] $ (q) $ [\text{Co(H}_2\text{O})_5\text{Cl]Cl} $ (r)

19. Among the following, the coloured compound is :- [IIT-2008]

- (B) $K_3[Cu(CN)_4]$
- (C) CuF₂
- (D) $[Cu(NCCH_3)_4]BF_4$
- Both $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$ are diamagnetic. The hybridisations of nickel in these complexes, respectively, are 20.
 - (A) sp^{3} , sp^{3}
- (B) sp^3 , dsp^2
- (C) dsp^2 , sp^3
- (D) dsp^2 , dsp^2 [IIT-2008]

21.	The IUPAC name of [N	$N(NH_3)_4$ [NiCl ₄] is –		[IIT-2008]					
	(A) Tetrachloronickel(II)	- tetraamminenickel(II)	(B) Tetraamminenick	el(II) - tetrachloronickel(II)					
	(C) Tetraamminenickel(II) - tetrachloronickelate(II) (D) Tetrachloronickel(II) - tetraamminenickelate(0)								
22.	The spin only magnetic moment value (in Bohr magneton units) of Cr(CO) ₆ is : [IIT 2009]								
	(A) 0	(B) 2.84	(C) 4.90	(D) 5.92					
23.	The compound(s) that exhibit(s) geometrical isomerism is (are): [IIT 2009								
	(A) [Pt(en)Cl ₂]	(B) $[Pt(en)_2]Cl_2$	(C) $[Pt(en)_2Cl_2]Cl_2$	(D) $[Pt(NH_3)_2Cl_2]$					
24.	The correct structure	of ethylenediaminetetraacet	tic acid (EDTA) is -	[IIT 2010]					
	HOOC-CH ₂	∠CH2-COOH	HOOC \	/COOH					
	(A) N-CH	CH,-COOH	(B) HOOC N-CH ₂ -	CH ₂ -N COOH					
	_	-		,COOH					
			HOOC CH.	ан ₂ — соон ан ₂ — соон					
	HOOC-CH ₂ (C) N-CI-	L-CH2-COOH CH3-COOH	(D) H						
	HOOC-CH ₂	`CH ₂ -COOH		CH ₂ CH ₂ -COOH					
25.	The ionization isomer	of [Cr(H ₂ O) ₄ Cl(NO ₂)]Cl is -	НО	[IIT 2010]					
		L 1 L)]Cl (D) [Cr(H ₂ O) ₄ Cl ₂ (NO ₂)].H ₂ O					
26.	2 . 2 2	a spin-only magnetic mom	2 .						
	(A) Ni(CO) ₄	(B) [NiCl ₄] ²⁻		(D) [Ni(CN) ₄] ²⁻					
27.	7	7	5 4	Cl^{-} , CN^{-} and $H_{2}O$ respectively,					
	are -			[JEE 2011]					
		edral and square planar		are planar and octahedral					
28.		rahedral and octahedral	(D) octahedral, squa	re planar and octahedral [JEE 2011]					
20.	Among the following K _a [Fe(CN) _a] (K) , [Co(N	[H ₃) ₆]Cl ₃ (L) , Na ₃ [Co(oxalate	e),] (M) , [Ni(H,O),]Cl,						
	$K_{2}[Pt(CN)_{4}]$ (O) and [Z		731 (7, 112 - 7612	· · · · ·					
	The diamagnetic com								
	(A) K, L, M, N	(B) K, M, O, P	(C) L, M, O, P	(D) L, M, N, O					
29.				of chloride ions present in 30					
30.		of $[Cr(H_2O)_5Cl]Cl_2$, as silve lature, the name of the comp		[JEE 2011] 3 is: [JEE 2012]					
00.	(A) Tetraaquadiamineco		51011 [00(1120)4(11113)2101						
	(B) Tetraaquadiammine	cobalt(III) chloride							
	(C) Diaminetetraaquaco	balt(III) chloride							
0.1	(D) Diamminetetraaquacobalt(III) chloride The colour of light absorbed by an aqueous solution of CuSO ₄ is - [JEE 2012]								
31.	(A) orange-red	orbed by an aqueous solution (B) blue-green	of $CuSO_4$ is - (C) yellow	[JEE 2012] (D) violet					
	(11) Orange-rea	(a) olue green	(O) yellow	(D) VIOLEL					
32.	$NiCl_2\{P(C_2H_5)_2(C_6H_5)\}_2$ exhibits temperature dependent magnetic behavior (paramagnetic/diamagnetic).								
	The coordination geometries of Ni^{2^+} in the paramagnetic and diamagnetic states are respectively :								
	[JE]								
	(A) tetrahedral and te		(B) square planar and square planar						
	(C) tetrahedral and sq	luare hiarigi	(D) square planar and tetrahedral						

33. Consider the following complex ions P, Q and R, $P = [FeF_6]^{3-}$, $Q = [V(H_9O)_6]^{2+}$ and $R = [Fe(H_9O)_6]^{2+}$ The correct order of the complex ions, according to their spin-only magnetic moment values (in B.M.) is -[JEE 2013] 34. [Co(EDTA)]⁻¹ complex ion is The pair(s) of coordination complex/ion exhibiting the same kind of isomerism is(are) - [JEE 2013] 35. (A) $[Cr(NH_3)_5Cl]Cl_2$ and $[Cr(NH_3)_4Cl_2]Cl$ (B) $[Co(NH_3)_4Cl_9]^+$ and $[Pt(NH_3)_9(H_9O)Cl]^+$ (C) $[CoBr_{2}Cl_{2}]^{2-}$ and $[PtBr_{2}Cl_{2}]^{2-}$ (D) $[Pt(NH_3)_3(NO_3)]$ Cl and $[Pt(NH_3)_3Cl]$ Br 36. **Statement-I**: $[Fe(H_2O)_5NO]SO_4$ is paramagnetic. [IIT-2008] Because Statement-II: The Fe in [Fe(H₂O)₅NO]SO₄ has three unpaired electrons. (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I (C) Statement-I is True, Statement-II is False (D) Statement-I is False, Statement-II is True 37. Statement-I: The geometrical isomers of the complex [M(NH₃)₄Cl₂] are optically inactive. [IIT-2008] Statement-II: Both geometrical isomers of the complex [M(NH₃)₄Cl₂] possess axis of symmetry. (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I (C) Statement-I is True, Statement-II is False (D) Statement-I is False, Statement-II is True 38. **Statement-I**: Zn²⁺ is diamagnetic [1998; 2M] Because Statement-II: The electrons are lost from 4s-orbital to form Zn^{2+} . (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I (C) Statement-I is True, Statement-II is False (D) Statement-I is False, Statement-II is True 39. A, B and C are three complexes of chromium(III) with the empirical formula H₁₂O₆Cl₃Cr. All the three complexes have water and chloride ion as ligands. Complex A does not react with concentrated H₂SO₄, whereas complexs B and C lose 6.75% and 13.5% of their original mass, respectively, on treatment with concentrated H₂SO₄, identify A, B and C. [1999; 6M] Draw the structures of $[Co(NH_3)_6]^{3+}$, $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$. Write the hybridisation of atomic orbital of 40. the transition metal in each case. [2000 main; 4M] 41. A metal complex having composition Cr(NH₃)₄Cl₂Br has been isolated in two forms A and B. The form A reacts with $AgNO_3$ to give a white precipitate readily soluble in dilute aqueous ammonia, whereas B gives a pale yellow precipitate soluble in concentrated ammonia. Write the formula of A and B and state the hybridization of chromium in each. Calculate their magnetic moments (spin-only value) Deduce the structures of $[NiCl_d]^{2-}$ and $[Ni(CN)_d]^{2-}$ considering the hybridization of the metal ion. Calculate 42. the magnetic moment (spin only) of the species. [2002 main; 5M] 43. Write the IUPAC nomenclature of the given complex along with its hybridization and structure.

44. Total number of geometrical isomers for the complex [RhCl(CO)(PPh₂)(NH₂)] is -

 $K_2[Cr(NO) (NH_3) (CN)_4],$

Integer Type Question:

 $(\mu = 1.73 \text{ B.M. spin only})$

[2003 main; 4M]

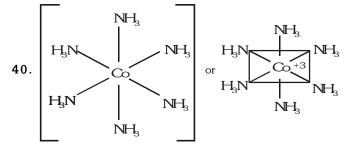
[IIT-2010]

JEE-ADVANCED					ANSWER	VER KEY			EXERCISE -5[B]	
•	Objective Questions									
	1 .D	2. C	3. D	4 .A	5 .A	6. B	7. D	8. B	9. A	10 .B
	11. B	12 .A	13 .C	14 .A	15 .A	16. D	17 .A	19 .C	20 .B	21 .C
	22 . A	23 . C,D	24 . C	25 .B	26 .B	27 .B	28. C	29 .6	30 .D	31 .A
	32 . C	33 .B	34 .8	35 .B,D						

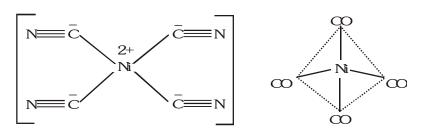
● Match the Column

18. (A)
$$\rightarrow$$
 p,q,s ; (B) \rightarrow p,r,s ; (C) \rightarrow q,s ; (D) \rightarrow q,s

• <u>Assertion - Reason Questions</u>


36.A **37.**B **38.**B

Subjective Questions


39. A =
$$[Cr(H_2O)_6]Cl_3$$

$$B = [Cr(H_2O)_5Cl] Cl_2 H_2O$$

$$C = [Cr(H_2O)_4Cl_2] Cl 2H_2O$$

Structure of $[Co(NH_3)_6]^{3+}$ is octahedral, d^2sp^3 hybridization

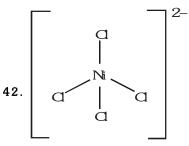
Structure of [Ni(CN)₄]²⁻ ion is square planar, dsp² hybridization Structure of Ni(CO)₄ is tetrahedral, sp³ hybridization

41.
$$[Cr(NH_3)_4ClBr]Cl + AgNO_3 \rightarrow AgCl \downarrow + [Cr(NH_3)_4ClBr] + NO_3^-$$

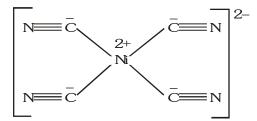
These precipitates of AgCl are soluble in NH_4OH due to formation of complex salt.

$$AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2Cl] + 2H_2O$$

white ppt. complex salt

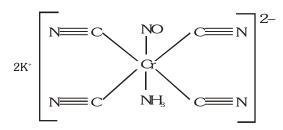

$$\mathsf{AgNO}_3 \; + \; (\mathsf{Cr}(\mathsf{NH}_3)_4 \mathsf{Cl}_2) \; \mathsf{Br} \quad \rightarrow \quad \; \mathsf{AgBr} \!\! \downarrow \; + \; (\mathsf{Cr}(\mathsf{NH}_3)_4 \mathsf{Cl}_2)^{^+} \; + \; \mathsf{NO}_3^-$$

pale yellow ppt


$$AgBr + 2NH_4OH \rightarrow [Ag(NH_3)_2 Br] + 2H_2O$$

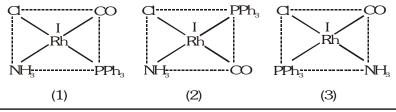
Pale yellow ppt.

Magnetic moment (μ) = 3.872 B.M.



Structure of $[NiCl_d]^{2-}$ is tetrahedral, sp³ hybridization, magnetic moment = 2.82 B.M.

Structure of $[Ni(CN)_{\alpha}]^{2-}$ is square planar, dsp^2 -hybridization, magnetic moment = 0


43. IUPAC name of $K_2[Cr(NO)(NH_3)(CN)_d]$ is potassium ammine tetra cyano nitrosylium chromate (I)

Structure of $K_2[Cr(NO)(NH_3)(CN)_4]$ is octahedral, d^2sp^3 -hybridization

44. (3) [RhCl(CO)(PPh₃)(NH₃)]

dsp², square planar, total 3 geometrical isomer.


```
HINTS:
Do Yourself I: 1. (a) co-ordination compound; (b) Double salt; (c) co-ordination compound
                    (d) Double salt; (e) Double salt; (f) co-ordination compound; (g) Double salt
<u>Do Yourself II</u>: 1. (a) [Pt(NH_3)_3Cl_2Br]^{\dagger}; (b) +1; (c) 6; (d) 6; (e) +4; (f) 2; (g) 1; (h) Yes; (i) No;
                    (j) one mole of AgCl & No AgBr; (k) No
                  (i) Potassium hexanitrito-Ncobaltate(III), (ii) Sodium pentacyanonitrosoniumferrate(I),
Do Yourself III:
                    (iii) \quad tetrachloronic kelate (II) \quad ion., \quad (iv) \quad penta ammine chlororuthenium (III) \quad ion., \\
                    (v) Tris(ethylenediamine)iron(III) ion, (vi) Bis(glycinato)nickel(II).
Do Yourself V: 1. (i) 36; (ii) 34; (iii) 86; (iv) 50
                          (i) sp^3, tetrahedral, 5.92 ; (ii) d^2sp^3 octahedral, 1.73 ; (iii) sp^3d^2 octahedral, 5.92
Do Yourself VI: 1.
                          (i) inner orbital complex; (ii) outer orbital complex;
                          (iii) inner [exception: (i) incase of Co+3 ligand C2O42- behave as a S.F.L.;
                                 (ii) in case of Fe<sup>+2</sup>, Mn<sup>+2</sup> ligand NH<sub>3</sub> behave like a W.F.L.]; (iv) outer
(iv) t_{2g}^{6}e_{g}^{0}, C.F.S.E = -2.4 \Delta_{0} + 3P.
                    2. Less interaction between metal and ligands.
                    3. \ \ t_{2g}^{\ 6}e_g^0\ -\ \text{octahedral}, \quad t_{2g}^{\ 4}e_g^2\ -\ \text{octahedral}, \quad t_{2g}^{\ 5}e_g^0\ -\ \text{octahedral}.
\underline{\text{Do Yourself VIII}}\ :\ 1.\ (i)\ 4.89BM\ ;\ (ii)\ 2.82BM\ ;\ (iii)\ 5.92BM\ ;\ (iv)\ 5.92BM\ ;\ (v)\ 4.89BM\ ;\ (vi)\ 2.82BM\ ;
                       (vii) 3.46 BM; (viii) 3.46 BM
Do Yourself IX: 1. Due to different crystal field splitting energy of complexes.
                    2. [Ni(NO_2)_6]^{4-} > [Ni(NH_3)_6]^{2+} > [Ni(H_2O)_6]^{2+}
                    1. Both produce different ions in aquous soltuion.
Do Yourself X:
                    2. (i) G.I. = None; (ii) G.I. = 2
                    3. Draw the mirror image of the complexes.
                    4. See the chart given in theroy.
                    5. G.I. = 3, O.I. = 0
                    6. (i) G.I., O.I. ; (ii) O.I. ; (iii) Linkage ; (iv) G.I.
```